
Operating Systems 2016/17
Solutions for Assignment 5

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

T-Question 5.1: Scheduling

a. Why are the scheduler and dispatcher good examples for the distinction between
policy and mechanism? 1 T-pt

Solution:
The CPU scheduler selects the next process to run and thus only implements a policy.
It does not perform the actual process switch (saving/restoring process context, etc.).
That is done by the dispatcher.

b. Briefly explain the difference between cooperative and preemptive scheduling? What
problem does preemptive scheduling solve? 2 T-pt

Solution:
In cooperative multitasking, the currently running process must explicitly invoke the
yield() system call to ask the kernel to switch to another process. With preemptive
scheduling, a periodic timer interrupt triggers scheduling decisions (a yield() sys-
tem call may also be available).

Preemptive scheduling thus solves the problem that a single process can (inadver-
tently) hog the CPU and prevent other processes from running. It also relieves the
application programmer from having to deal with process scheduling.

c. With lottery scheduling, every process is assigned a certain number of tickets. To
make a scheduling decision the lottery scheduler randomly chooses a ticket and
selects the process that owns the ticket. Briefly explain how lottery scheduling can
be implemented without allocating any dedicated objects per ticket such as structs,
integers, or array elements. 2 T-pt

Solution:

Each process is assigned a number of tickets (single integer in PCB). When the sche-
duler is triggered, a random ticket number in the range between 0 and the total
number of tickets is generated. The scheduler than iterates over the list of ready pro-
cesses and adds up each process’s ticket amount. If the sum becomes greater than
the chosen random ticket, the current process must own the ticket and the lottery
scheduler consequently selects it for dispatching.

1



d. Give the scheduling sequence (e.g., PX , PY , PZ ,. . . ) for the following processes with
round robin scheduling and a timeslice length of 1 time unit. The scheduler first
adds new processes (if any) to the tail of the ready queue and then inserts the pre-
vious process to the tail (if it is still runnable). 2 T-pt

Process Burst length Arrival time
P1 3 0
P2 5 2
P3 2 4

Solution:
The resulting round robin schedule is:
P1, P1, P2, P1, P2, P3, P2, P3, P2, P2

P1 P1 P2 P1 P2 P3 P2 P3 P2 P2

0 1 2 3 4 5 6 7 8 9 10

With the round robin policy, the scheduler preempts the current process after each
time slice and selects a different thread to run. The table gives the start time and
computation time for each process. At time units 0 and 1, only P1 is present in the
ready queue and is thus selected for scheduling. At time unit 2, process P2 appears.
When the scheduler is invoked, P1 is still running, the ready queue is thus empty and
P2 becomes the only element in the queue. Then P1 the CPU is taken away from P1

and P1 is added to the tail of the ready queue: [P2, P1]. Consequently, the scheduler
selects P2 as next process. After a time unit, the queue is [P1, P2] and P1 runs again.
This scheme is followed to the end.

Ready 
Queue

Running P1

<empty>

Ready 
Queue

Running P1

Decision after 
1st time unit

P2

1) Add new 
process to queue

2) Take P1 from CPU 
and add to queue

3) Schedule

2



e. Calculate the average waiting time for the example in 5.1d. 1 T-pt

Solution:
The waiting time of a process denotes the number of timeslices a process spent in
the ready queue. A timeslice is accounted to the waiting time, if the process is ready
to run (i.e., not blocked and waiting for an event or I/O completion), however, the
scheduler decided to select a different process for execution or a different process is
still running and the scheduler has not been invoked, yet.

To compute the waiting time, we can manually count the timeslices by looking at the
scheduling sequence or use the following formula:

TW
Pi

= ((LPi + lts)−APi)−BPi

lts := Length of a time slice
LPi := Last time slice of process Pi

APi := Arrival time
BPi := Burst time

Accordingly, the solution is:

TW
P1

= ((3 + 1)− 0)− 3 = 1, TW
P2

= ((9 + 1)− 2)− 5 = 3, TW
P3

= ((7 + 1)− 4)− 2 = 2

Tavg =
TW
P1

+ TW
P2

+ TW
P3

3
=

1 + 3 + 2

3
=

6

3
= 2

Total:
8T-pt

3


